Strongly coupled gauge theories: In and out of the conformal window

Anna Hasenfratz University of Colorado Boulder

> BNL-BSM workshop Vec 6, 2013

In collaboration with A. Cheng, Y. Liu, G. Petropoulos and D. Schaich ArXiv:1301.1355,1310.1124 and in prep

- strongly coupled need non-perturbative investigation
- gauge coupling is slowly walking (near marginal)
- Nearly conformal models are very different from QCD
 - → numerical methods from QCD are not always effective
 - modified methods
 (finite size scaling with corrections)
 - new approaches
 (running anomalous mass from spectral density)

- strongly coupled need non-perturbative investigation
- gauge coupling is slowly walking (near marginal)
- Nearly conformal models are very different from QCD
 - → numerical methods from QCD are not always effective
 - modified methods
 (finite size scaling with corrections)
 - new approaches
 (running anomalous mass from spectral density)

- strongly coupled need non-perturbative investigation
- gauge coupling is slowly walking (near marginal)
- Nearly conformal models are very different from QCD
 - → numerical methods from QCD are not always effective
 - modified methods
 (finite size scaling with corrections)
 - new approaches
 (running anomalous mass from spectral density)

- strongly coupled need non-perturbative investigation
- gauge coupling is slowly walking (near marginal)
- Nearly conformal models are very different from QCD
 - → numerical methods from QCD are not always effective
 - modified methods
 (finite size scaling with corrections)
 - new approaches
 (running anomalous mass from spectral density)

Universal scaling

RG flow: towards IRFP, away in m:

In n steps: $m \rightarrow mb^y \rightarrow mb^{2y} \dots \rightarrow mb^{ny}$ $L \rightarrow L/b \rightarrow L/b^2 \dots \rightarrow L/b^n$

but only as long as $mb^{ny} < O(1)$ or $L/b^b > O(1)$

Universal scaling behavior along the renormalized trajectory

NON - universal:

RG flow: towards IRFP, away in m:

In n steps: $m \rightarrow mb^y \rightarrow mb^{2y} \dots \rightarrow mb^{ny}$ $L \rightarrow L/b \rightarrow L/b^2 \dots \rightarrow L/b^n$

but only as long as $mb^{ny} < O(1)$ $L/b^b > O(1)$

If m is large or L is small the flow does not RT: no universal behavior → no scaling

Finite size scaling - textbook case

Consider a FP with one relevant operator $m \approx 0$ with scaling dimension $y_m > 0$ and irrelevant operators

 g_i with scaling dimensions $y_i < 0$.

Renormalization group arguments in volume L³ predict scaling of physical masses as

$$M_H L = f(Lm^{1/y_m}, g_i m^{-y_i/y_m})$$
 as $m \approx 0$

as
$$m \to 0$$
, $L \to \infty$: $g_i m^{-y_i/y_0} \to 0$
$$M_H L = f(x), \quad x = L m^{1/y_m}$$

-tune y_m until different volumes "collapse"

Finite size scaling $N_f=12$ (nHYP action)

- β = 4.0 (meson spectrum matches LatHiggs coll. β =2.2 closely)
 - good curve collapse for larger $x = Lm^{1/y_m}$
 - inconsistent exponents (see results from LHC, KMI as well)
 - Not very good curve collapse at small x (small L)

Scaling exponents

Result of "curve collapse" for pseudo-scalar, vector and f_{π} :

 β =2.8 — 6.0

Volumes: 12³, 16³, 20³, 24³, 32³

 $N_T = 2 N_S$

masses: 0.005 — 0.12

such that x = 0.2 - 5

25 - 35 data points at each β

y_m depends strongly on β and the operator considered

Finite size scaling with a near-marginal operator

Consider a FP with one relevant operator $m \approx 0$ with scaling dimension $y_m > 0$ and irrelevant operators

 g_i with scaling dimensions $y_i < 0$ g_0 (near) marginal, $y_0 \le 0$

Renormalization group arguments in volume L³ predict

$$M_H L = f(Lm^{1/y_m}, g_i m^{-y_i/y_m})$$
 as $m \approx 0$

as
$$m \to 0$$
, $L \to \infty$: $g_i m^{-y_i/y_0} \to 0$
$$g_0 \to g_0 m^{\omega}, \quad \omega = -y_0/y_m \gtrsim 0$$

$$M_H L = f(x, g_0 m^{\omega}), \quad x = L m^{1/y_m}$$

The scaling function depends on two variables now!

Corrections to finite size scaling

Physical masses scale as

$$\mathbf{M}_H = L^{-1} f(x, g_0 m^{\omega}), \quad \omega = -y_0 / y_m$$

 $f(x, g_0 m^{\omega})$ is analytic both in x and g_0 .

If the g₀m^ω corrections are small, expand

$$LM_H = F(x)(1 + g_0 m^{\omega} G(x))$$

- -F(0), G(0) are finite constants
- as $L \to \infty$: $M_H \propto m^{1/y_m} \to F(x) \propto x$, G(x) = const

Approximate
$$G(x) = c$$
 (should be checked) $\rightarrow \frac{LM_H}{1+c g_0 m^{\omega}} = F(x)$

Need minimization in y_m , ω , and $c_0=cg_0$

Scaling test with corrections

Curve collapse: 2 parameters, y_m and c_0 ; y_0 =-0.36 fixed (2-loop PT)

Fit: two quadratic polynomials one at $x < x_0$, one at $x > x_0$, separation point x_0 free (here $x_0 = 1.36$)

Consistent curve collapse both at small and large $x = Lm^{1/y_m}$

$$y_m=1.23(2)$$
, $c_0 = -0.67 - \chi^2/dof = 1.2$ (from 3.3)

Scaling exponent with corrections

Include all data $M_{\pi} L$, $M_{V} L$, $f_{\pi} L$ points

Leading operator only

With correction

- good curve collapse
 - consistent scaling exponent y_m=1.22(2)
 - can we constrain the fit parameters better?

Scaling exponent with corrections

Include all data $M_{\pi} L$, $M_{V} L$, $f_{\pi} L$ points

- good curve collapse
- consistent scaling exponent y_m=1.22(2)
- can we constrain the fit parameters better?

Combining data sets:

If the gauge coupling is irrelevant, the scaling function F(x)

$$\frac{LM_H}{1+c\,g_0m^\omega} = F(x)$$

is unique, independent of

- gauge coupling β
- lattice action (nHYP or stout or HISQ or Wilson or DW ...)

Combine different data sets

- we need to rescale the bare fermion mass $m(\beta) \rightarrow s m(\beta)$
- remnant scaling violations could be different for different sets
 → most noticeable at small x (or L)

Combining data sets:

Fit with:

- common y_m, y₀,
- F(x) depends on the operator only
- mass rescale factor depends on β
- correction term c₀ depends on β, operator

Combining gauge couplings:

pion at β=4.0,4.5 (all available volumes): $y_m=1.23[2]$, $y_0=-0.47[6]$; $\chi^2/dof=1.2[60]$

Combining gauge couplings AND operators

pion and vector at β =4.0,4.5 (new fit!) y_m =1.22[2], y_0 =-0.50[5]; χ^2 /dof =1.4 [108]

Combining gauge couplings AND actions

pion at β =4.0,4.5, LHC, KMI: y_m =1.27[1], y_0 =-0.43[5]; χ^2 /dof =1.8 [99]

Combining gauge couplings AND actions AND operators

pion and vector at β =4.0,4.5, LHC, KMI:

$$y_m=1.27[1], y_0=-0.51[5]; \chi^2/dof=2.7[188]$$

Combining gauge couplings AND actions AND operators

pion and vector at β =4.0,4.5, LHC, KMI :

$$y_m=1.27[1], y_0=-0.51[5]; \chi^2/dof=2.7[188]$$

Combining gauge couplings AND actions AND operators

```
pion, vector and f_{\pi} at \beta=4.0, 4.5, 5.0, LHC: y_{m}=1.28[1], y_{0}=-0.56[3]; \chi^{2} /dof =3.2 [ 286]
```


Full disclosure : f_{π} is worst in the fit, especially when including KMI data

Consistency:

Fit 30-300 points with 10 - 20 parameters ...

Consistency:

Fit 30-300 points with 10 - 20 parameters ...

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann

Consistency:

Fit 30-300 points with 10 - 20 parameters ... yet y_m, y₀, are consistent

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann

Fits combining different data sets, operators, predict $y_m=1.24[2]$ with $\Box \chi^2/dof \approx 1-3$

FSS summary, N_f=12

FSS fits with corrections that takes the walking gauge coupling into account give consistent results:

- good curve collapse, consistent exponents at each gauge coupling
- combined fit of many β values with common scaling function has χ^2 close to individual fits
- even different actions can be combined

Message from FSS

The gauge coupling of strongly coupled conformal systems are expected to run slowly ("walking")

→ scaling is strongly influenced by this near-marginal coupling

This is universal in every walking system!

- In finite size scaling analysis the marginal coupling can be accounted for
- Its effect should be considered in every other approach

Dirac operator spectral density and mode number

The **mode number**
$$v(\lambda) = V \int_{-\lambda}^{\lambda} \rho(\omega) d\omega \propto V \lambda^{\alpha+1}$$
 is RG invariant (Giusti, Luscher)

 $\rightarrow \alpha$ is related to the anomalous dimension

$$\frac{4}{1+\alpha} = y_m = 1 + \gamma_m$$
 (Zwicky, DelDebbio; Patella)

 λ is an energy scale $\rightarrow \alpha(\lambda)$ predicts a scale dependent (running) anomalous dimension

$$\gamma_m(\lambda \to 0) = \gamma_m^* \qquad \gamma_m(\lambda = \mathcal{O}(1)) = \gamma_0 g^2 + \dots$$

N_f =4 : chirally broken

Broken chiral symmetry in IR, asymptotic freedom in UV

Rescaling: $N_f = 4$

The dimension of λ is carried by the lattice spacing: $\lambda_{lat} = \lambda_{pa}$

Rescale to a common physical scale:

Universal curve covering almost 2 orders of magnitude in energy!

Perturbative: functional form from 1-loop PT, relative scale is fitted

Most of these data were obtained on deconfined (small) volumes at m=0!

N_f =12 : controversial system

 β =3.0, 4.0, 5.0, 6.0

- •There is no sign of asymptotic freedom behavior for β <6.0, γ_m grows towards UV
- •Not possible to rescale different β's to a single universal curve

Looks as if there was an IRFP between β =5.0 -6.0

$N_f = 8$

Expected to be chirally broken - looks like walking!

- No asymptotic free scalingNo rescale of different couplings
- -When $\gamma_m \sim 1$ in the UV, the S⁴b lattice phase develops

Dirac operator eigenvalue spectrum and spectral density

Unique & promising method!

- Can distinguish strong and weak coupling region of conformal /chirally broken systems

Predictions:

N_f=4 : scaling & anomalous dimension

N_f=12: looks conformal

N_f=8 : could be walking with large anomalous dimension!

Conclusion

The gauge coupling of strongly coupled conformal systems are expected to run slowly ("walking")

→ scaling is strongly influenced by this near-marginal coupling

This is universal in every walking system!

- Dirac spectral density shows this walking
- In finite size scaling analysis the marginal coupling can be accounted for
- Its effect should be considered in every other approach